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The Einstein equation [22] implies that the energy-momentum tensor is
of vanishing divergence. This requirement is satisfied if the energy momen-
tum tensor is covariant constant. Chaki and Roy [6] showed that a general
relativistic spacetime with covariant constant energy-momentum tensor is
Ricci symmetric, that is, ∇S = 0, where S is the Ricci tensor of the space-
time and ∇ denotes the covariant differentiation with respect to the metric
tensor g. If however, ∇S ̸= 0, then such a spacetime may be called weakly
Ricci symmetric [32]. We may say that the Ricci symmetric condition is only
a special case of weakly Ricci symmetric manifold. Recently, Mantica and
Molinari [14] introduced weakly Z symmetric manifolds which generalize the
notion of weakly Ricci symmetric manifolds. Also De, Mantica and Suh [11]
introduced the notion of weakly cyclic Z symmetric manifolds (WCZS)n.
As a special case Mantica and Suh [18] studied pseudo Z symmetric space-
times. It is therefore meaningful to study the properties of weakly cyclic
Z symmetric spacetimes in general relativity.

A non-flat Riemannian or a semi-Riemannian manifold (Mn, g)(n > 2)
is called weakly Ricci symmetric [32] if the Ricci tensor S is non-zero and
satisfies the condition

(∇XS)(U, V ) = A(X)S(U, V ) +B(U)S(V,X) +D(V )S(X,U),(1.1)

where ∇ denotes the Levi-Civita connection and A, B and D are 1-forms
which are non-zero simultaneously. Such an n-dimensional Riemannian man-
ifold is denoted by (WRS)n. If A = B = D = 0, then the manifold reduces
to a Ricci symmetric manifold. The weakly Ricci symmetric spacetimes
have been studied by De and Ghosh [9]. Among others it is proved that if in
a weakly Ricci symmetric spacetime of non-zero scalar curvature the matter
distribution is perfect fluid, then the acceleration vector and the expansion
scalar are zero and such a spacetime can not admit heat flux. Several authors
studied spacetimes in several ways such as conformally flat almost pseudo
Ricci symmetric spacetimes by De, Özgür and De [10], m-projectively flat
spacetimes by Zengin [35], pseudo Z symmetric spacetimes by Mantica and
Suh [18] and many others.

According to Yano [34] a vector field V is torse-forming if

∇XV = fX + ω(X)V,

where f is a scalar function and ω is a 1-form. Its properties in pseudo-
Riemannian manifolds were studied by Mikeš and Rachunek [20]. The vector
is called concircular if ω is closed.

In a Riemannian or a semi-Riemannian manifold (Mn, g), (n > 2),
a (0, 2) symmetric tensor is a generalized Z tensor if

(1.2) Z(X,Y ) = S(X,Y ) + ϕg(X,Y ),
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Abstract. The object of the present paper is to study weakly cyclic Z sym-
metric spacetimes. At first we prove that a weakly cyclic Z symmetric spacetime
is a quasi Einstein spacetime. Then we study (WCZS)4 spacetimes satisfying
the condition divC = 0. Next we consider conformally flat (WCZS)4 spacetimes.
Finally, we characterise dust fluid and viscous fluid (WCZS)4 spacetimes.

1. Introduction

The present paper is concerned with certain investigations in general
relativity by the coordinate free method of differential geometry. In this
method of study spacetime of general relativity is regarded as a connected
four dimensional semi-Riemannian manifold (M4, g) with Lorentzian metric
g with signature (−,+,+,+). The geometry of the Lorentzian manifold be-
gins with the study of causal character of vectors of the manifold. It is due
to this causality that the Lorentzian manifold becomes a convenient choice
for the study of general relativity.
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where ϕ is an arbitrary scalar function. The scalar Z is obtained by con-
tracting (1.2) over X and Y as follows:

(1.3) Z = r + nϕ,

where the scalar curvature r =
∑n

i=1 εiS(ei, ei), g(ei, ei) = εi, εi = ±1 and
{ei} is an orthonormal basis of the tangent space at each point of the mani-
fold. In a recent paper [14] the authors introduced weakly Z symmetric man-
ifolds which is denoted by (WZS)n. A Riemannian or a semi-Riemannian
manifold is said to be weakly Z symmetric, denoted by (WZS)n, if the
generalized Z tensor satisfies the condition

(1.4) (∇XZ)(U, V ) = A(X)Z(U, V ) +B(U)Z(X,V ) +D(V )Z(U,X),

where A, B and D are 1-forms not simultaneously zero. If ϕ = 0, we recover
from (1.4) a (WRS)n, and as a particular case pseudo Ricci symmetric man-
ifolds (PRS)n [4]. If ϕ = − r

n (classical Z tensor) and A is replaced by 2A
and B and D are replaced by A, then

Z(U, V ) =
n− 1

n
P (U, V ),

where P (U,V ) is the projective Ricci tensor considered by Chaki and Saha [7]
and obtained by a contraction of the projective curvature tensor [12]. It is
a generalization of the weakly Ricci symmetric manifolds [4], and pseudo
Ricci symmetric manifolds [4] and pseudo projective Ricci symmetric mani-
folds [7].

A non-flat Riemannian or a semi-Riemannian manifold (Mn, g)(n > 2)
is called weakly cyclic Z symmetric [11] and denoted by (WCZS)n, if the
generalized Z tensor is non-zero and satisfies the condition

(∇XZ)(U, V ) + (∇UZ)(V,X) + (∇V Z)(X,U)(1.5)

= A(X)Z(U, V ) +B(U)Z(V,X) +D(V )Z(X,U),

where Z is the generalized Z tensor. Such a manifold is denoted by
(WCZS)n. The classical Z tensor is obtained with the choice ϕ = − 1

nr,
where r is the scalar curvature. Hereafter we refer to the generalized Z
tensor simply as the Z tensor.

Recently two of the present authors studied pseudo Z symmetric Rieman-
nian manifolds [16] and recurrent Z forms on Riemannian manifolds [17],
that is, Riemannian manifolds on which the form Λ(Z)l = Zkl dx

k satisfies
the condition DΛ(Z)l = β ∧ Λ(Z)l, D being the exterior covariant derivative

and β = βi dx
i, the associated one-form. It should be noted that the con-

cept of Z recurrent form embraces both pseudo Z symmetric and weakly
Z symmetric manifolds.
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On the other hand, Lorentzian manifolds with Ricci tensor S of the form

(1.6) S(X,Y ) = ag(X,Y ) + bA(X)A(Y )

are often named perfect fluid spacetimes where a and b are scalars and the
vector field ρ metrically equivalent to the 1-form A, that is, g(X, ρ) = A(X)
for allX , is a unit time like vector field, that is, g(ρ, ρ) = −1. It is well known
that any Robertson–Walker spacetime is a perfect fluid spacetime [22]. The
form (1.6) of the Ricci tensor is implied by Einstein’s equation if the energy-
matter content of the spacetime is a perfect fluid with velocity vector ρ. The
scalars a and b are linearly related to the pressure p and the energy density
σ measured in the locally comoving initial frame.

Geometers identify the special form (1.6) of the Ricci tensor as the defin-
ing property of quasi Einstein manifolds [5]. Semi-Riemannian quasi Ein-
stein manifolds arose in the study of exact solutions of Einstein’s equations.
Robertson–Walker spacetimes are quasi Einstein [3]. The importance of the
study of the quasi Einstein spacetime lies in the fact that this spacetime rep-
resents the present state of the universe, when the effects of viscosity and
the heat flux have become negligible and the matter content of the universe
may be considered as a perfect fluid.

Shepley and Taub [29] studied perfect fluid spacetime with equation of
state p = p(σ) and the additional condition divC = 0, where C is the con-
formal curvature tensor. A related result was obtained by Sharma [28]. De
et al. [10] proved that conformally flat almost pseudo-Ricci symmetric space-
times, that is,

(∇XS)(Y, U) =
(
A(X) +B(X)

)
S(Y, U) +A(Y )S(X,U) +A(Z)S(X,Y ),

are Robertson–Walker spacetimes.
Motivated by the above works, in the present paper we study (WCZS)4

spacetimes. Study of such a spacetime partly deals with the physical struc-
ture of the universe at a large scale and describes physical processes occurring
throughout its evolution and having observable consequences in the present
time.

The paper is organized as follows: After introduction in Section 2, we
prove that a (WCZS)4 spacetime is a quasi Einstein spacetime. Section 3
is devoted to the study of (WCZS)4 spacetimes satisfying the condition
divC = 0. In this section we first show that such a spacetime satisfying
the condition divC = 0 under certain assumption, the integral curves of
the vector field ρ are geodesic and the vector field ρ is irrotational. Next
we prove that such a spacetime is locally a product space. Also, we show
that a (WCZS)4 spacetime under certain condition is the Robertson–Walker
spacetime. Section 4 deals with conformally flat (WCZS)4 spacetimes. Fi-
nally, we study dust fluid and viscous fluid (WCZS)4 spacetimes. Here we
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prove an interesting result which states that under certain condition a dust
fluid (WCZS)4 spacetime satisfying Einstein’s field equation with cosmo-
logical constant is devoid of matter.

2. (WCZS)4 spacetimes

Proposition 2.1. A (WCZS)4 spacetime is a quasi Einstein spacetime.

Proof. Interchanging U and V in (1.5) we obtain

(∇XZ)(V, U) + (∇V Z)(U,X) + (∇UZ)(X,V )(2.1)

= A(X)Z(V, U) +B(V )Z(U,X) +D(U)Z(X,V ).

Subtracting (2.1) from (1.5) we get

[
B(U)−D(U)

]
Z(V,X) +

[
D(V )−B(V )

]
Z(X,U) = 0.

which implies

(2.2)
[
B(U)−D(U)

]
Z(V,X) =

[
B(V )−D(V )

]
Z(X,U),

where the symmetric properties of Z have been used. Suppose

(2.3) E(X) = g(X, ρ) = B(X)−D(X),

for all vector fields X , where ρ is a unit time-like vector field associated with
the 1-form E. Then the above relation reduces to

(2.4) E(U)Z(V,X) = E(V )Z(X,U).

Taking a frame field and contracting (2.4) over X and V , we get

E(U)[r + 4ϕ] = S(U, ρ) + ϕE(U).

which implies

(2.5) S(U, ρ) = [r + 3ϕ]E(U).

Putting V = ρ in (2.4) yields

(2.6) E(U)Z(ρ,X) = −Z(X,U).

Using (1.2) in (2.6) we obtain

(2.7) E(U)
[
S(ρ,X) + ϕg(X, ρ)

]
= −

[
S(X,U) + ϕg(X,U)

]
.
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Using (2.5) in (2.7) we have

E(U)
[
{r + 3ϕ}E(X) + ϕE(X)

]
= −

[
S(X,U) + ϕg(X,U)

]
.

which implies

S(X,U) = −ϕg(X,U)− (r + 4ϕ)E(X)E(U),

that is,

(2.8) S(X,U) = ag(X,U) + bE(X)E(U),

where a = −ϕ, b = −(r + 4ϕ). �

3. (WCZS)4 spacetime satisfying the condition divC = 0

Suppose (Mn, g) is a semi-Riemannian manifold of dimension n and X
is any vector field on M . Then the divergence of the vector field X , denoted
by divX , is defined as

divX =
n∑

i=1

εig(∇eiX, ei),

where {ei} is an orthonormal basis of the tangent space TpM at any point
p ∈ M and εi = ±. Again, if K is a tensor field of type (1,3), then its diver-
gence divK is a tensor field of type (0,3) defined as

(divK)(X1, . . . , X3) =

n∑
i=1

εig
(
(∇eiK)(X1, . . . , X3), ei

)
.

In this section we assume that the (WCZS)4 spacetimes satisfy the con-
dition divC = 0, where C denotes the Weyl conformal curvature tensor and
“div” denotes divergence. Hence we have [12]

(3.1) (∇XS)(Y, U)− (∇US)(Y,X) =
1

6

[
g(Y, U)dr(X)− g(X,Y )dr(U)

]
.

Using (2.8) in (3.1) we have

da(X)g(Y, U) + db(X)E(Y )E(U) + b
[
(∇XE)(Y )E(U)(3.2)

+ (∇XE)(U)E(Y )
]
− da(U)g(Y,X)− db(U)E(Y )E(X)

− b
[
(∇UE)(Y )E(X) + (∇UE)(X)E(Y )

]
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=
1

6

[
g(Y, U)dr(X)− g(X,Y )dr(U)

]
.

Taking a frame field and contracting X and Y we get

−3da(U) + db(ρ)E(U) + bE(U)(δE) + b(∇ρE)(U) + db(U) = −1

2
dr(U),

(3.3)

where

δE =
n∑

i=1

εi(∇eiE)(ei).

Putting X = Y = ρ in (3.2) yields

b(∇ρE)(U) = da(ρ)E)(U)− db(ρ)E(U)(3.4)

+ da(U)− db(U)− 1

6

[
dr(ρ)E(U) + dr(U)

]
.

Substituting (3.4) in (3.3) we get

−2da(U) + da(ρ)E(U) + bE(U)(δE)(3.5)

− 1

6
dr(ρ)E(U) = −1

3
dr(U).

Putting U = ρ in (3.5) we obtain

(3.6) −3da(ρ)− b(δE) = −1

2
dr(ρ).

Using (3.6) in (3.5) we get

(3.7) −2da(U)− 2da(ρ)E(U) +
1

3
dr(ρ)E(U) = −1

3
dr(U).

Let r = a, then

(3.8) dr(U) = da(U).

and

(3.9) db(U) = 3da(U).

Putting (3.8) in (3.7), yields

(3.10) da(U) = −da(ρ)E(U).
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Using (3.8) in (3.10) we get

(3.11) dr(U) = −dr(ρ)E(U).

Putting Y = ρ in (3.2) and using (3.10) we have

(3.12) (∇UE)(X)− (∇XE)(U) = 0,

since b ̸= 0. This means that the 1-form E defined by (2.3) is closed, that is,

dE(X,Y ) = 0.

Hence it follows that

(3.13) g(∇Xρ, Y ) = g(∇Y ρ,X)

for all X , Y .
Now using Y = ρ in (3.13) we get

(3.14) g(∇Xρ, ρ) = g(∇ρρ,X).

Since g(∇Xρ, ρ) = 0, from (3.14) it follows that g(∇ρρ,X) = 0 for all X .
Hence ∇ρρ = 0. This means that the integral curves of the vector field ρ are
geodesic and ρ is irrotational. Therefore we can state the following:

Theorem 3.1. In a (WCZS)4 spacetime satisfying the condition divC
= 0 under the assumption r = a, the integral curves of the vector field ρ are
geodesic and the vector field ρ is irrotational.

Using (3.10) and (3.11) in (3.4) we obtain

(3.15) (∇ρE)(U) = 0,

since b ̸= 0. Now we consider the scalar function

(3.16) f =
1

6

dr(ρ)

b
.

Then using (3.9) we get

(3.17) ∇Xf =
1

2

dr(ρ)

b2
dr(X) +

1

6b
d2r(ρ,X).

On the other hand, (3.11) implies

d2r(Y,X) = −d2r(ρ, Y )E(X)− dr(ρ)(∇Y E)(X).

from which we get

(3.18) d2r(ρ, Y )E(X) = d2r(ρ,X)E(Y ),
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(3.11) dr(U) = −dr(ρ)E(U).

Putting Y = ρ in (3.2) and using (3.10) we have

(3.12) (∇UE)(X)− (∇XE)(U) = 0,

since b ̸= 0. This means that the 1-form E defined by (2.3) is closed, that is,

dE(X,Y ) = 0.

Hence it follows that

(3.13) g(∇Xρ, Y ) = g(∇Y ρ,X)

for all X , Y .
Now using Y = ρ in (3.13) we get

(3.14) g(∇Xρ, ρ) = g(∇ρρ,X).

Since g(∇Xρ, ρ) = 0, from (3.14) it follows that g(∇ρρ,X) = 0 for all X .
Hence ∇ρρ = 0. This means that the integral curves of the vector field ρ are
geodesic and ρ is irrotational. Therefore we can state the following:

Theorem 3.1. In a (WCZS)4 spacetime satisfying the condition divC
= 0 under the assumption r = a, the integral curves of the vector field ρ are
geodesic and the vector field ρ is irrotational.

Using (3.10) and (3.11) in (3.4) we obtain

(3.15) (∇ρE)(U) = 0,

since b ̸= 0. Now we consider the scalar function

(3.16) f =
1

6

dr(ρ)

b
.

Then using (3.9) we get

(3.17) ∇Xf =
1

2

dr(ρ)

b2
dr(X) +

1

6b
d2r(ρ,X).

On the other hand, (3.11) implies

d2r(Y,X) = −d2r(ρ, Y )E(X)− dr(ρ)(∇Y E)(X).

from which we get

(3.18) d2r(ρ, Y )E(X) = d2r(ρ,X)E(Y ),
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since (∇XE)(Y ) = (∇Y E)(X) and d2r(Y,X) = d2r(X,Y ).
Putting X = ρ in (3.18), it follows that

(3.19) d2r(Y, ρ) = −d2r(ρ, ρ)E(Y ).

Then using (3.19) in (3.17) we obtain

∇Xf = −dr(ρ)

2b2
dr(ρ)E(X)− 1

6b
d2r(ρ, ρ)E(X).

which implies that

(3.20) ∇Xf = µE(X),

where µ = 1
6b

[
− d2r(ρ, ρ)− 3dr(ρ)dr(ρ)

]
.

Using (3.20), it is easy to show that

ω(X) =
1

6

dr(ρ)

b
E(X) = fE(X)

is closed. In fact, dω(X,Y ) = 0.
Using (3.10), (3.11), (3.12) in (3.2) we have

−dr(ρ)E(X)g(Y, U) + b
[
(∇XE)(Y )E(U) + (∇XE)(U)E(Y )

]
(3.21)

+ dr(ρ)E(U)g(Y,X)− b
[
(∇UE)(Y )E(X) + (∇UE)(X)E(Y )

]

=
1

6

[
− g(Y, U)dr(ρ)E(X) + g(X,Y )dr(ρ)E(U)

]
.

Putting U = ρ in (3.21) and using (3.15) we obtain

(3.22) (∇XE)(Y ) =

(
f − dr(ρ)

b

)
g(X,Y ) +

(
ω(X)− dr(ρ)

b
E(X)

)
E(Y ).

From (3.22) it follows that

(3.23) ∇Xρ =

(
f − dr(ρ)

b

)
X +

(
ω(X)− dr(ρ)

b
E(X)

)
ρ.

Let ρ⊥ denote the 3-dimensional distribution in a (WCZS)4 spacetime or-

thogonal to ρ. If X and Y belong to ρ⊥, then

(3.24) g(X, ρ) = 0.

and

(3.25) g(Y, ρ) = 0.
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Since (∇Xg)(Y, ρ) = 0, it follows from (3.23) and (3.25) that

g(∇XY, ρ) = g(∇Xρ, Y ) =

(
f − dr(ρ)

b

)
g(X,Y ).

Similarly, we get

g(∇Y X, ρ) = g(∇Y ρ,X) =

(
f − dr(ρ)

b

)
g(X,Y ).

Hence

(3.26) g(∇XY, ρ) = g(∇Y X, ρ).

Now [X,Y ] = ∇XY −∇Y X and therefore by (3.26) we obtain

g
(
[X,Y ], ρ

)
= g(∇XY −∇Y X, ρ) = 0.

Hence [X,Y ] is orthogonal to ρ. That is [X,Y ] belongs to ρ⊥. Thus the
distribution ρ⊥ is involutive [8]. Hence from Frobenius’ theorem [8] it follows
that ρ⊥ is integrable. This implies that if a (WCZS)4 spacetime satisfies
divC = 0, then it is locally a product space. Hence we have the following:

Theorem 3.2. If a (WCZS)4 spacetime satisfies divC = 0 and fulfill-
ing the condition r = a, then it is locally a product space.

From (3.22) one can write

(3.27) (∇XE)(Y ) = βg(X,Y ) + γ(X)E(Y ),

where

β =

(
f − dr(ρ)

b

)
and γ(X) =

(
ω(X)− dr(ρ)

b
E(X)

)
.

Obviously γ is closed. In local components this reads ∇kEj = γkEj + βgkj .
Therefore the vector field ρ corresponding to the 1-form E defined by

g(X, ρ) = E(X) is a concircular vector field [27,33]. Hence we can state the
following:

Proposition 3.1. If a (WCZS)4 spacetime satisfies divC = 0 and ful-
fills the condition r = a, then ρ is a concircular vector field.

Yano [34] proved that in order that a Riemannian space admits a concir-
cular vector field, it is necessary and sufficient that there exists a coordinate
system with respect to which the fundamental quadratic differential form
may be written in the form

(3.28) ds2 =
(
dx1

) 2
+ q(t)2g∗αβ dx

α dxβ,
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where g∗αβ = g∗αβ(x
γ) are functions of xγ only (α, β, γ = 2, 3, . . . , n) and q =

q(x1) ̸= const. is a function of x1 only.
Now if Ej is closed, it is locally a gradient of a suitable scalar func-

tion, that is, Ej = ∇jσ (see [24] pp. 242–243); setting Xj = Eje
−σ we have

(see [15] and [19])

∇kXj = e−σ(∇kEj − Ej∇kσ)

= e−σ
[
(∇kσ)Ej + βgkj − Ej(∇kσ)

]
= (e−σβ)gkj

and consequently ∇kXj = θgkj , being θ = e−σβ a scalar function and
XjX

j = −e−2σ < 0 a time-like vector. The previous equation can be writ-
ten in the form ∇kXj +∇jXk = 2θgkj , that is, Xj is a conformal Killing
vector [31]. We recall now the definition of a generalized Robertson–Walker
spacetime [1,25,26]

Definition 3.1. An n � 3-dimensional Lorentzian manifold is a gener-
alized Robertson–Walker spacetime if the metric takes the local shape

(3.29) ds2 = −(dt)2 + q(t)2g∗αβ dx
α dxβ,

where g∗αβ = g∗αβ(x
γ) are functions of xγ only (α, β, γ = 2, 3, . . . , n) and q is

a function of t only.

The generalized Robertson–Walker spacetime is thus the warped product
−1× q2M∗ [1,25,26] where M∗ is an n− 1 dimensional Riemannian mani-
fold. If M∗ is a 3-dimensional Riemannian manifold of constant curvature,
the spacetime is called Robertson–Walker spacetime. The following deep
result was recently proved in [2].

Theorem [2]. Let M be an n � 2 dimensional Lorentzian manifold.
Then the spacetime is a generalized Robertson–Walker spacetime if and only
if it admits a time-like vector of the form ∇kXj = θgkj .

In view of these results, if a (WCZS)4 spacetime satisfies divC = 0 and
fulfills the condition r = a, then it admits a concircular vector field rescalable
to a time-like vector of the form ∇kXj = θgkj and so becomes a generalized
Robertson–Walker spacetime, that is, it is the warped product −1× q2M∗

where M∗ is a 3-dimensional Riemannian manifold. Gȩbarowski [23] proved
that the warped product −1× q2M∗ satisfies divC = 0 if and only if M∗ is
Einstein. But a 3-dimensional Einstein manifold is a manifold of constant
curvature. Hence we conclude that

Theorem 3.3. If a (WCZS)4 spacetime satisfies divC = 0 and fulfills
the condition r = a, then the spacetime is the Robertson–Walker spacetime.
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4. Conformally flat (WCZS)4 spacetimes

This section is devoted to the study of conformally flat (WCZS)4 space-
times. In a conformally flat 4-dimensional Lorentzian manifold the curvature
tensor R is of the form

R(X,Y )U =
1

2

[
S(Y, U)X − S(X,U)Y + g(Y, U)QX − g(X,U)QY

]
(4.1)

− r

6

[
g(Y, U)X − g(X,U)Y

]
,

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ).
Using (2.8) in (4.1) yields

R(X,Y )U =
1

2

[
ag(Y, U) + bE(Y )E(U)− ag(X,U)Y − bE(X)E(U)Y

+ ag(Y, U)X + bg(Y, U)E(X)ρ− ag(X,U)Y − bg(X,U)E(Y )ρ
]

−r

6

[
g(Y, U)X − g(X,U)Y

]

Let ρ⊥ denote the 3-dimensional distribution in a conformally flat (WCZS)4
spacetimes orthogonal to ρ, then

(4.2) R(X,Y )U =
(
a− r

6

) [
g(Y, U)X − g(X,U)Y

]

for all X,Y ∈ ρ⊥ and

(4.3) R(X, ρ)ρ = −
(
a− r

6

)
X,

for every X ∈ ρ⊥. According to Karchar [13], a Lorentzian manifold is called
infinitesimal spatially isotropic relative to a timelike unit vector field ρ if its
curvature tensor R satisfies the relations

R(X,Y )U = l
[
g(Y, U)X − g(X,U)Y

]

for all X,Y,U ∈ ρ⊥ and R(X, ρ)ρ = mX for all X ∈ ρ⊥, where l,m are real
valued functions on the manifold. So by virtue of (4.2) and (4.3) we can
state the following:

Theorem 4.1. A conformally flat (WCZS)4 spacetime is infinitesimally
spatially isotropic relative to the unit timelike vector field ρ.
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5. Dust fluid and viscous fluid (WCZS)4 spacetimes

In a dust or pressureless fluid spacetime, the energy momentum tensor
T is of the form [30]

(5.1) T (X,Y ) = σE(X)E(Y ),

where σ is the energy density of the dust-like matter and E is a non-zero 1-
form such that g(X, ρ) = E(X), for all X , ρ being the velocity vector field
of the flow, that is, g(ρ, ρ) = −1. In Proposition 2.1, it is proved that a
(WCZS)4 spacetime is a quasi Einstein spacetime, that is,

(5.2) S(X,Y ) = ag(X,Y ) + bE(X)E(Y ),

where a = −ϕ, b = −(r + 4ϕ). Einstein’s field equation with cosmological
constant is

(5.3) S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = κT (X,Y ),

where λ is the cosmological constant and κ is the gravitational constant.
Using (5.1) and (5.2) in (5.3), we obtain

(5.4)
(
a− r

2
+ λ

)
g(X,Y ) + bE(X)E(Y ) = κσE(X)E(Y ).

Taking a frame field after contraction over X and Y we have

4
(
a− r

2
+ λ

)
− b = −κσ

which implies

(5.5) λ =
1

4
(2r − 4a+ b− κσ).

Again, if we put X = Y = ρ in (5.4), we get

−
(
a− r

2
+ λ

)
+ b = κσ

which implies that

(5.6) λ =
r

2
− a+ b− κσ.

Combining equation (5.5) and (5.6), we obtain

σ

κ
= −(r + 4ϕ)

κ
.

Therefore σ = −Z
κ , using (1.3). Thus we can state the following:
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Theorem 5.1. A dust fluid (WCZS)4 spacetime satisfying Einstein’s
field equation with cosmological constant is vacuum, provided the scalar Z
vanishes.

Let us consider the energy momentum tensor T of a viscous fluid space-
time in the following form [21,22]:

(5.7) T (X,Y ) = pg(X,Y ) + (σ + p)E(X)E(Y ) + P (X,Y ),

where σ, p are the energy density and isotropic pressure respectively and P
denotes the anisotropic pressure of the fluid.

Using (5.2) and (5.3) in (5.7), we get

(
a− r

2
+ λ

)
g(X,Y ) + bE(X)E(Y )(5.8)

= κ
[
pg(X,Y ) + (σ + p)E(X)E(Y ) + P (X,Y )

]
.

Putting X = Y = ρ in (5.8), yields

−
(
a− r

2
+ λ

)
+ b = κ

[
− p+ (σ + p) + I

]
,

where I = P (ρ, ρ), which implies

(5.9) σ = −1

κ

[r
2
+ λ+ 3ϕ+ Iκ

]
.

Again contracting (5.8) over X and Y , we get

4
(
a− r

2
+ λ

)
− b = κ

[
4p− (σ + p) + J

]
,

where J =Trace of P , which implies

(5.10) p =
1

κ

[
λ− r

2
− ϕ− κ(I + J)

3

]

Thus we can state the following:

Theorem 5.2. In a viscous fluid (WCZS)4 spacetime obeying Einstein’s
equation with cosmological constant, the energy density and the isotropic pres-
sure are given by the relations (5.9) and (5.10).

We now discuss whether a viscous fluid (WCZS)4 spacetime can admit
heat flux or not. Let the energy momentum tensor T be of the following
form [21,22]:

(5.11) T (X,Y ) = pg(X,Y )+(σ+p)E(X)E(Y )+E(X)F (Y )+E(Y )F (X),
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where F (X) = g(X, ξ) for all vector fields X ; ξ being the heat flux vector
field. Thus we have g(ρ, ξ) = 0, that is, F (ρ) = 0.

Using (5.2) and (5.3) in (5.11) we obtain
(
a− r

2
+ λ

)
g(X,Y ) + bE(X)E(Y )(5.12)

= κ
[
pg(X,Y ) + (σ + p)E(X)E(Y ) + E(X)F (Y ) + E(Y )F (X)

]
.

Putting Y = ρ in (5.12), yields
(
a− r

2
+ λ− b+ σκ

)
E(X) + κF (X) = 0,

which implies

(5.13) F (X) = −1

κ

(
3ϕ+

r

2
+ λ+ κσ

)
E(X),

where a = −ϕ, and b = −(r + 4ϕ).
Thus we can state the following:

Theorem 5.3. A viscous fluid (WCZS)4 spacetime obeying Einstein’s
field equation with cosmological constant admits heat flux, provided 3ϕ+ r

2
+ λ+ κσ ̸= 0.
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[20] J. Mikeš and L. Rachunek, Torse-forming vector fields in T-symmetric Riemannian
spaces, in: Steps in Differential Geometry, Proc. of the Colloq. on Diff. Geom-
etry (Debrecen, 2000), pp. 219–229.

[21] M. Novello and M. J. Reboucas, The stability of a rotating universe, The Astrophysical
Journal, 225 (1978), 719–724.

[22] B. O’Neill, Semi-Riemannian Geometry with Applications to the Relativity, Academic
Press (New York–London, 1983).
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